Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Chem Mater ; 35(19): 7957-7966, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37840777

RESUMEN

Ferrofluids have been extensively employed in industrial, environmental, and biomedical areas. Among them, fluorous ferrofluids are of particular interest because of the biorthogonal nature of perfluorocarbons (PFCs). However, the noninteracting nature of PFCs as well as challenges in functionalization of nanoparticle surfaces with fluorous ligands has limited their applications, especially in biomedicine. In particular, commercially available fluorous ferrofluids are stabilized using ionic surfactants with charged groups that physically interact with a wide range of charged biological molecules. In this paper, we developed a unique two-phase ligand attachment strategy to render stable fluorous ferrofluids using nonionic surfactants. The superparamagnetic Fe3O4 or MnFe2O4 core of the magnetic nanoparticles, the magnetic component of the ferrofluid, was coated with a silica shell containing abundant surface hydroxyl groups, thereby enabling the installation of fluorous ligands through stable covalent, neutral, siloxane bonds. We explored chemistry-material relationships between different ligands and PFC solvents and found that low-molecular-weight ligands can assist with the installation of high-molecular-weight ligands (4000-8000 g/mol), allowing us to systematically control the size and thickness of ligand functionalization on the nanoparticle surface. By zero-field-cooled magnetization measurements, we studied how the ligands affect magnetic dipole orientation forces and observed a curve flattening that is only associated with the ferrofluids. This work provided insight into ferrofluids' dependence on interparticle interactions and contributed a methodology to synthesize fluorous ferrofluids with nonionic surfactants that exhibit both magnetic and chemical stability. We believe that the doped MnFe2O4 fluorous ferrofluid has the highest combination of stability and magnetization reported to date.

2.
ACS Nano ; 17(7): 6899-6911, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36961475

RESUMEN

Vaccination is the most important way of population protection from life-threatening pathogenic infections. However, its efficiency is frequently compromised by a failure of strong antigen presentation and immune activation. Herein, we developed virus-like magnetic mesoporous silica nanoparticles as a universal vaccination platform (termed MagParV) for preventing pathogenic infections. This platform was constructed by integrating synthetic biology-based endoplasmic reticulum-targeting vesicles with magnetic mesoporous silica particles. This platform exhibited high antigen-loading capacity, strongly targeting the endoplasmic reticulum and promoting antigen presentation in dendritic cells. After prime-boost vaccination, the antigen-loading MagParV with AMF drastically elicited specific antibody production against corresponding antigens of fungal, bacterial, and viral pathogens. A systemic infection model further revealed that the platform effectively protected the mice from severe fungal systemic infections. This study realized synthetic biology-facilitated green manufacturing of vaccines, which is promising for magnetism-activated vaccination against different kinds of pathogenic infections.


Asunto(s)
Dióxido de Silicio , Vacunación , Animales , Ratones , Formación de Anticuerpos , Fenómenos Magnéticos
3.
ACS Appl Mater Interfaces ; 14(50): 56007-56017, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36509713

RESUMEN

Unicellular bacterial cells exhibit diverse population behaviors (i.e., aggregation, dispersion, directed assembly, biofilm formation, etc.) to facilitate communication and cooperation. Suitable bacterial behaviors are required for efficient nutrient uptake, cell recycling, and stress response for environmental and industrial application of bacterial populations. However, it remains a great challenge to artificially control bacterial behaviors because of complicated genetic and biochemical mechanisms. In this study, we designed facile mesoporous silica nanoparticle (MSN)-based assemblies to intelligently regulate bacterial behaviors with the help of light and magnetic field. This system was composed of magnetic MSNs, i.e., MnFe2O4@CoFe2O4@MSN modified by photoactive spiropyran (SP), and the chitosan-based polymers ChiPSP, i.e., chitosan grafted by triphenylphosphine and SP. The assembly strongly bound bacterial cells, inducing reversible bacterial aggregation by visible-light irradiation and dark. Moreover, the formed bacterial aggregates could be further governed by a directed magnetic field (DMF) to form microfibers and by an alternating magnetic field (AMF) to form biofilms. This study realized stimulus-triggered regulation of bacterial behaviors by MSNs and implied the great power of chemical strategies in intelligent control of diverse biological processes for environmental and industrial applications.


Asunto(s)
Quitosano , Nanopartículas , Dióxido de Silicio , Porosidad
4.
ACS Nano ; 15(9): 14618-14630, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34519214

RESUMEN

Magnetic resonance imaging (MRI)-guided high-intensity focused ultrasound (HIFU) has been applied as a therapeutic tool in the clinic, and enhanced MRI contrast for depiction of target tissues will improve the precision and applicability of HIFU therapy. This work presents a "spotlight MRI" contrast enhancement technique, which combines four essential components: periodic HIFU stimulation, strong modulation of T1 caused by HIFU, rapid MRI signal collection, and spotlight MRI spectral signal processing. The T1 modulation is enabled by a HIFU-responsive nanomaterial based on mesoporous silica nanoparticles with Pluronic polymers (Poloxamers) and MRI contrast agents attached. With periodic HIFU stimulation in a precisely defined region containing the nanomaterial, strong periodic MRI T1-weighted signal changes are generated. Rapid MRI signal collection of the periodic signal changes is realized by a rapid dynamic 3D MRI technique, and spotlight MRI spectral signal processing creates modulation enhancement maps (MEM) that suppress background signal and spotlight the spatial location with nanomaterials experiencing HIFU stimulation. In particular, a framework is presented to analyze the trade-offs between different parameter choices for the signal processing method. The optimal parameter choices under a specific experimental setting achieved MRI contrast enhancement of more than 2 orders of magnitude at the HIFU focal point, compared to controls.


Asunto(s)
Nanopartículas , Imagen por Resonancia Magnética
5.
J Am Chem Soc ; 143(16): 6025-6036, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33857372

RESUMEN

Stimuli-responsive multifunctional mesoporous silica nanoparticles (MSNs) have been studied intensively during the past decade. A large variety of mesopore capping systems have been designed, initially to show that it could be done and later for biomedical applications such as drug delivery and imaging. On-command release of cargo molecules such as drugs from the pores can be activated by a variety of stimuli. This paper focuses on three noninvasive, biologically usable external stimuli: magnetism, ultrasound, and light. We survey the variety of MSNs that have been and are being used and assess capping designs and the advantages and drawbacks of the nanoplatforms' responses to the various stimuli. We discuss important recent advances, their basic mechanisms, and their requirements for stimulation. On the basis of our survey, we identify fundamental challenges and suggest future directions for research that will unleash the full potential of these fascinating nanosystems for clinical applications.


Asunto(s)
Luz , Campos Magnéticos , Nanoestructuras/química , Dióxido de Silicio/química , Nanomedicina Teranóstica , Ondas Ultrasónicas , Portadores de Fármacos/química , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Porosidad
6.
Nanoscale ; 13(10): 5497-5506, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33687426

RESUMEN

Physically stimulated nanoparticles that deliver size-selected cargo and function as logic gates are reported. To achieve this goal the particle requires multiple components, and we recognized early on that the components, not just the released cargo, could be used to demonstrate logic operations (OR and AND logic). For stimuli, we chose two non-invasive types, red light and alternating magnetic fields (AMF), because they both have potential biological relevance. To realize cargo delivery with size selection and logic operations, we mechanized the surface of core@shell nanoparticles with a superparamagnetic core that generates localized heating when exposed to an AMF, and a mesoporous silica shell into which cargo molecules with different sizes were loaded. We demonstrate the core@shell nanoparticles can load the dual cargos with different sizes and subsequently release the smaller (∼0.5 nm) and bigger (∼2 nm) cargos in succession when stimulated by a red light followed by an AMF. Finally, we demonstrate that the multi-component nanoparticles could function as nanoparticle-based Boolean logic gates where AMF and red light served as the two inputs and the release of small cargo, and free cyclodextrin served as the outputs. The construction of two Boolean logic gates (OR, and AND) was realized.

7.
Chem Commun (Camb) ; 56(71): 10297-10300, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32756711

RESUMEN

We developed a theranostic approach exemplifying a concept called an "exchange method" that controls and "images" drug release from nanoparticles using magnetic resonance imaging-guided high-intensity focused ultrasound. The controllable amount of released drug and therapeutic efficacy can be self-reported by associated MRI contrast changes in solution and in cells.


Asunto(s)
Liberación de Fármacos , Imagen por Resonancia Magnética , Nanopartículas/química , Ondas Ultrasónicas , Medios de Contraste
8.
ACS Nano ; 14(5): 5926-5937, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32310641

RESUMEN

Pathogenic biofilms protected by extracellular polymeric substances frequently compromise the efficiency of antibacterial drugs and severely threaten human health. In this study, we designed a multi-stimuli-responsive magnetic supramolecular nanoplatform to co-deliver large and low molecular weight drugs for synergistic eradication of pathogenic biofilms. This co-delivery platform was composed of mesoporous silica nanoparticles (MSNs) with large pores (MSNLP) capped by ß-cyclodextrin (ß-CD)-modified polyethylenimine (PEICD) and adamantane (ADA)-decorated MSNs containing a magnetic core (MagNP@MSNA) capped by cucurbit[6]uril (CB[6]). The host MSNs (H, MSNLP@PEICD) and the guest MSNs (G, MagNP@MSNA-CB[6]) spontaneously form coassemblies (H+G), based on the host-guest interactions between ß-CD and ADA. Under the stimulus of pathogen cells together with heating by an alternating magnetic field (AMF), the supramolecular coassemblies released both the large molecular weight antimicrobial peptide melittin (MEL) and the low molecular weight antibiotic ofloxacin (OFL) with high efficiency. As compared to free drugs (MEL and OFL) or unattached MSNs (H or G), the drug-loading H+G coassemblies (H-MEL+G-OFL) exhibited much higher capacity for biofilm eradication, thoroughly removing biofilm biomass and killing the pathogenic cells, and displaying no obvious toxicity to mammalian cells. This strong antibiofilm capacity was severely decreased when the host and guest components were prevented from coassembling but administered simultaneously, revealing the critical role of the supramolecular assembly in biofilm removal. Moreover, an in vivo implantation model showed that the coassemblies eradicated the pathogenic biofilms from the implants, preventing host tissue damage and inflammation. Therefore, the co-delivering and multi-stimuli-responsive nanocarriers could overcome the anti-infection difficulties during treatment of infections because of protective biofilms.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Antibacterianos/farmacología , Biopelículas , Humanos , Proteínas Citotóxicas Formadoras de Poros
9.
J Am Chem Soc ; 142(11): 5212-5220, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32091888

RESUMEN

In the presence of an alternating magnetic field (AMF), a superparamagnetic iron oxide nanoparticle (SPION) generates heat. Understanding the local heating mechanism of a SPION in suspension and in a mesoporous silica nanoparticle (MSN) will advance the design of hyperthermia-based nanotheranostics and AMF-stimulated drug delivery in biomedical applications. The AMF-induced heating of single-domain SPION can be explained by the Néel relaxation (reorientation of the magnetization) or the Brownian relaxation (motion of the particle). The latter is investigated using fluorescence depolarization based on detecting the mobility-dependent polarization anisotropy (r) of two luminescence emission bands at different wavelengths corresponded to the europium-doped luminescent SPION (EuSPION) core and the silica-based intrinsically emitting shell of the core-shell MSN. The fluorescence depolarization experiments are carried out with both the free and the silica-encapsulated SPION nanoparticles with and without application of the AMF. The r value of a EuSPION core-mesoporous silica shell in the presence of the AMF does not change, indicating that no additional rotational motion of the core-shell nanoparticles is induced by the AMF, disproving the contribution of Brownian heating and thus supporting Néel relaxation as the dominant heating mechanism.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Dióxido de Silicio/química , Anisotropía , Europio/química , Polarización de Fluorescencia , Colorantes Fluorescentes/química , Calefacción , Porosidad , Rodaminas/química
10.
RSC Med Chem ; 11(3): 392-410, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479645

RESUMEN

A potent class of isoquinoline-based α-N-heterocyclic carboxaldehyde thiosemicarbazone (HCT) compounds has been rediscovered; based upon this scaffold, three series of antiproliferative agents were synthesized through iterative rounds of methylation and fluorination modifications, with anticancer activities being potentiated by physiologically relevant levels of copper. The lead compound, HCT-13, was highly potent against a panel of pancreatic, small cell lung carcinoma, prostate cancer, and leukemia models, with IC50 values in the low-to-mid nanomolar range. Density functional theory (DFT) calculations showed that fluorination at the 6-position of HCT-13 was beneficial for ligand-copper complex formation, stability, and ease of metal-center reduction. Through a chemical genomics screen, we identify DNA damage response/replication stress response (DDR/RSR) pathways, specifically those mediated by ataxia-telangiectasia and Rad3-related protein kinase (ATR), as potential compensatory mechanism(s) of action following HCT-13 treatment. We further show that the cytotoxicity of HCT-13 is copper-dependent, that it promotes mitochondrial electron transport chain (mtETC) dysfunction, induces production of reactive oxygen species (ROS), and selectively depletes guanosine nucleotide pools. Lastly, we identify metabolic hallmarks for therapeutic target stratification and demonstrate the in vivo efficacy of HCT-13 against aggressive models of acute leukemias in mice.

11.
ACS Appl Mater Interfaces ; 11(47): 43835-43842, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31661236

RESUMEN

A novel self-assembling peptide-functionalized core-shell mesoporous silica nanoparticle was developed as a drug carrier. Superparamagnetic manganese- and cobalt-doped iron oxide nanoparticles formed the core for the mesoporous silica shell coating. On the silica outer shell, the peptide Boc-Phe-Phe-Gly-Gly-COOH was covalently conjugated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysulfosuccinimide sodium salt coupling. The self-assembling property of the peptide at physiological temperature was utilized to block the pore openings, while the disassembly at elevated local particle temperature released cargo molecules without bulk heating that would cause cell damage. Both conventional heating and heating in an alternating magnetic field were tested for the release of fluorescein and daunorubicin. In vitro experiments showed high cytotoxicity on pancreatic carcinoma cells (PANC-1) when this delivery system was activated by an alternating magnetic field, while control particles without drugs showed no obvious cytotoxicity.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Péptidos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Daunorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Liberación de Fármacos , Humanos , Magnetismo , Nanopartículas del Metal/química , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/química
12.
J Am Chem Soc ; 141(44): 17670-17684, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31604010

RESUMEN

Magnetic resonance imaging (MRI) is an essential modality for clinical diagnosis, and MRI-guided high-intensity focused ultrasound (MRgHIFU) is a powerful technology for targeted therapy. Clinical applications of MRgHIFU primarily utilize hyperthermia and ablation to treat cancerous tissue, but for drug delivery applications thermal damage is undesirable. A biofriendly MRgHIFU-responsive mesoporous silica nanoparticle (MSN) platform that is stimulated within a physiological safe temperature range has been developed, reducing the possibility of thermal damage to the surrounding healthy tissues. Biocompatible polyethylene glycol (PEG) was employed to cap the pores of MSNs, and the release of cargo molecules by HIFU occurs without substantial temperature increase (∼4 °C). To visualize by MRI and measure the stimulated delivery in situ, a U.S. Food and Drug Administration (FDA)-approved gadolinium-based contrast agent, gadopentetate dimeglumine (Gd(DTPA)2-), was used as the imageable cargo. Taking advantage of the three-dimensional (3-D) imaging and targeting capabilities of MRgHIFU, the release of Gd(DTPA)2- stimulated by HIFU was pinpointed at the HIFU focal point in 3-D space in a tissue-mimicking gel phantom. The amount of Gd(DTPA)2- released was controlled by HIFU stimulation times and power levels. A positive correlation between the amount of Gd(DTPA)2- released and T1 was found. The MRgHIFU-stimulated cargo release was further imaged in a sample of ex vivo animal tissue. With this technology, the biodistribution of the nanocarriers can be tracked and the MRgHIFU-stimulated cargo release can be pinpointed, opening up an opportunity for future image-guided theranostic applications.


Asunto(s)
Medios de Contraste/química , Portadores de Fármacos/química , Gadolinio DTPA/química , Nanopartículas/química , Dióxido de Silicio/química , Animales , Pollos , Medios de Contraste/farmacocinética , Liberación de Fármacos , Gadolinio DTPA/farmacocinética , Imagen por Resonancia Magnética/métodos , Metilcelulosa/química , Leche/química , Fantasmas de Imagen , Polietilenglicoles/química , Prueba de Estudio Conceptual , Sefarosa/química , Nanomedicina Teranóstica/métodos , Factores de Tiempo , Ondas Ultrasónicas
13.
Chem Commun (Camb) ; 55(69): 10261-10264, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31393462

RESUMEN

Periodic high-intensity focused ultrasound modulation of a nanoparticle generates reversible MRI T1 relaxivity changes at the 1.5 mm3 focal point causing periodic T1-weighted signal changes. Fourier analysis extracts signal changes at the modulation frequency, and a modulation enhancement map spotlights the precise region of interest by increasing contrast almost 100-fold.

14.
J Am Chem Soc ; 141(32): 12475-12480, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31353894

RESUMEN

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-Aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that J-aggregates of NIR fluorophore IR-140 can be prepared inside hollow mesoporous silica nanoparticles (HMSNs) to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging in vivo with 980 nm excitation.


Asunto(s)
Benzotiazoles/química , Medios de Contraste/química , Nanopartículas/química , Dióxido de Silicio/química , Animales , Benzotiazoles/efectos de la radiación , Benzotiazoles/toxicidad , Medios de Contraste/efectos de la radiación , Medios de Contraste/toxicidad , Estabilidad de Medicamentos , Rayos Infrarrojos , Ratones Desnudos , Nanopartículas/toxicidad , Imagen Óptica/métodos , Polietilenglicoles/química , Polietilenglicoles/toxicidad , Dióxido de Silicio/toxicidad
15.
Theranostics ; 9(11): 3341-3364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244957

RESUMEN

Major objectives in nanomedicine and nanotherapy include the ability to trap therapeutic molecules inside of nano-carriers, carry therapeutics to the site of the disease with no leakage, release high local concentrations of drug, release only on demand - either autonomous or external, and kill the cancer cells or an infectious organism. This review will focus on mesoporous silica nanoparticle carriers (MSN) with a large internal pore volume suitable for carrying anticancer and antibiotic drugs, and supramolecular components that function as caps that can both trap and release the drugs on-command. Caps that are especially relevant to this review are rotaxanes and pseudorotaxanes that consist of a long chain-like molecule threaded through a cyclic molecule. Under certain conditions discussed throughout this review, the cyclic molecule can be attracted to one end of the rotaxane and in the presence of a stimulus can slide to the other end. When the thread is attached near the pore opening on MSNs, the sliding cyclic molecule can block the pore when it is near the particle or open it when it slides away. The design, synthesis and operation of supramolecular systems that act as stimuli-responsive pore capping devices that trap and release molecules for therapeutic or imaging applications are discussed. Uncapping can either be irreversible because the cap comes off, or reversible when the cyclic molecule is prevented from sliding off by a steric barrier. In the latter case the amount of cargo released (the dose) can be controlled. These nanomachines act as valves. Examples of supramolecular systems stimulated by chemical signals (pH, redox, enzymes, antibodies) or by external physical signals (light, heat, magnetism, ultrasound) are presented. Many of the systems have been studied in vitro proving that they are taken up by cancer cells and release drugs and kill the cells when stimulated. Some have been studied in mouse models; after IV injection they shrink tumors or kill intracellular pathogens after stimulation. Supramolecular constructs offer fascinating, highly controllable and biologically compatible platforms for drug delivery.


Asunto(s)
Antibacterianos/administración & dosificación , Antineoplásicos/administración & dosificación , Compuestos de Calcio , Sistemas de Liberación de Medicamentos , Sustancias Macromoleculares/administración & dosificación , Nanopartículas , Silicatos , Animales , Línea Celular , Humanos , Sustancias Macromoleculares/farmacocinética , Sustancias Macromoleculares/farmacología , Ratones , Nanomedicina/métodos , Nanomedicina/tendencias , Rotaxanos/administración & dosificación , Rotaxanos/farmacocinética , Rotaxanos/farmacología
16.
Nanotheranostics ; 3(2): 166-178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31183312

RESUMEN

Rationale: Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. In this setting, real-time monitoring of therapy and tumor site would give the clinicians a handle to observe therapeutic response and to quantify drug amount to optimize the treatment. In this work, we developed a liposome-based cargo (cancer drugs) delivery strategy that could simultaneously monitor the real-time alternating magnetic field-induced cargo release from the change in MRI relaxation parameter R1 and the location and condition of liposome from the change in R2. The tumor site can then be monitored during the cargo release because liposomes would passively target the tumor site through the enhanced permeability and retention (EPR) effect. Physical insights from the experimental results and corresponding Monte Carlo spin dynamics simulations were also discussed. Methods: Superparamagnetic iron oxide (SPIO) nanoparticles, diethylenetriaminepentaacetic acid gadolinium(III) (Gd(III)-DTPA), and a model cancer drug (fluorescein) were co-loaded in PEGylated thermosensitive liposomes. The liposomes were characterized by transmission electron cryo-microscopy (cryoTEM), dynamic light scattering (DLS), and inductively coupled plasma optical emission spectrometry (ICP-OES). Alternating magnetic field (AMF) was used to create controlled mild hyperthermia (39-42°C) and facilitate controlled cargo (fluorescein) release from the thermosensitive liposomes. MRI relaxation parameters, R1 and R2, were measured at room temperature. The temporal variation in R1 was used to obtain the temporal profile of cargo release. Due to their similar sizes, both the gadolinium and cargo (model cancer drug fluorescein) would come out of the liposomes together as a result of heating. The temporal variation in R2 was used to monitor SPIO nanoparticles to enhance the tumor contrast. Monte Carlo spin dynamics simulations were performed by solving the Bloch equations and modeling SPIO nanoparticles as magnetized impenetrable spheres. Results: TEM images and DLS measurements showed the diameter of the liposome nanoparticle ~ 200 nm. AMF heating showed effective release of the model drug. It was found that R1 increased linearly by about 70% and then saturated as the cargo release process was completed, while R2 remained approximately constant with an initial 7%-drop and then recovered. The linear increase in R1 is consistent with the expected linear cargo release with time upon AMF heating. Monte Carlo spin dynamics simulations suggest that the initial temporal fluctuation of R2 is due to the plausible changes of SPIO aggregation and the slow non-recoverable degradation of liposomal membrane that increases water permeability with time by the heating process. The simulations show an order of magnitude increase in R2 at higher water permeability. Conclusion: We have performed MR parameter study of the release of a cargo (model cancer drug, fluorescein) by magnetic heating from thermosensitive multifunctional liposomes loaded with dual contrast agents. The size of the liposome nanoparticles loaded with model cancer drug (fluorescein), gadolinium chelate, and SPIO nanoparticles was appropriate for a variety of cancer therapies. A careful and detailed analysis with theoretical explanation and simulation was carried out to investigate the correlation between MRI relaxation parameters, R1 and R2, and different cargo release fractions. We have quantified the cargo release using R1, which shows a linear relation between each other. This result provides a strong basis for the dosage control of drug delivered. On the other hand, the fairly stable R2 with almost constant value suggests that it could be used to monitor the position and condition of the liposomal site, as SPIO nanoparticles mostly remained in the aqueous core of the liposome. Because our synthesized SPIO-encapsulated liposomes could be targeted to tumor site passively by the EPR effect, or actively through magnetofection, this study provides a solid ground for developing MR cancer theranostics in combination of this nanostructure and AMF heating strategy. Furthermore, our simulation results predict a sharp increase in R2 during the AMF heating, which opens up the exciting possibility of high-resolution, high-contrast real-time imaging of the liposomal site during the drug release process, provided AMF heating could be incorporated into an MRI setup. Our use of the clinically approved materials, along with confirmation by theoretical simulations, make this technique a promising candidate for translational MR cancer theranostics.


Asunto(s)
Antineoplásicos , Medios de Contraste , Portadores de Fármacos , Calor , Campos Magnéticos , Imagen por Resonancia Magnética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Liposomas
17.
J Biol Inorg Chem ; 24(5): 621-632, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31250199

RESUMEN

Triapine (3-AP), is an iron-binding ligand and anticancer drug that is an inhibitor of human ribonucleotide reductase (RNR). Inhibition of RNR by 3-AP results in the depletion of dNTP precursors of DNA, thereby selectively starving fast-replicating cancer cells of nucleotides for survival. The redox-active form of 3-AP directly responsible for inhibition of RNR is the Fe(II)(3-AP)2 complex. In this work, we synthesize 12 analogs of 3-AP, test their inhibition of RNR in vitro, and study the electronic properties of their iron complexes. The reduction and oxidation events of 3-AP iron complexes that are crucial for the inhibition of RNR are modeled with solution studies. We monitor the pH necessary to induce reduction in iron complexes of 3-AP analogs in a reducing environment, as well as the kinetics of oxidation in an oxidizing environment. The oxidation state of the complex is monitored using UV-Vis spectroscopy. Isoquinoline analogs of 3-AP favor the maintenance of the biologically active reduced complex and possess oxidation kinetics that allow redox cycling, consistent with their effective inhibition of RNR seen in our in vitro experiments. In contrast, methylation on the thiosemicarbazone secondary amine moiety of 3-AP produces analogs that form iron complexes with much higher redox potentials, that do not redox cycle, and are inactive against RNR in vitro. The catalytic subunit of human Ribonucleotide Reductase (RNR), contains a tyrosyl radical in the enzyme active site. Fe(II) complexes of 3-AP and its analogs can quench the radical and, subsequently, inactivate RNR. The potency of RNR inhibitors is highly dependent on the redox properties of the iron complexes, which can be tuned by ligand modifications. Complexes are found to be active within a narrow redox window imposed by the cellular environment.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hierro/química , Piridinas/química , Tiosemicarbazonas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Electroquímica/métodos , Humanos , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/metabolismo , Tirosina/química
19.
Acc Chem Res ; 52(6): 1531-1542, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31082188

RESUMEN

Mesoporous silica nanoparticles (MSNs) are delivery vehicles that can carry cargo molecules and release them on command. The particles used in the applications reported in this Account are around 100 nm in diameter (about the size of a virus) and contain 2.5 nm tubular pores with a total volume of about 1 cm3/g. For the biomedical applications discussed here, the cargo is trapped in the pores until the particles are stimulated to release it. The challenges are to get the particles to the site of a disease and then to deliver the cargo on command. We describe methods to do both, and we illustrate the applicability of the particles to cure cancer and intracellular infectious disease. Our first steps were to design multifunctional nanoparticles with properties that allow them to carry and deliver hydrophobic drugs. Many important pharmaceuticals are hydrophobic and cannot reach the diseased sites by themselves. We describe how we modified MSNs to make them dispersible, imagable, and targetable and discuss in vitro studies. We then present examples of surface modifications that allow them to deliver large molecules such as siRNA. In vivo studies of siRNA delivery to treat triple-negative breast and ovarian cancers are presented. The next steps are to attach nanomachines and other types of caps that trap drug molecules but release them when stimulated. We describe nanomachines that respond autonomously (without human intervention) to stimuli specific to disease sites. A versatile type of machine is a nanovalve that is closed at neutral (blood) pH but opens upon acidification that occurs in endolysosomes of cancer cells. Another type of machine, a snap-top cap, is stimulated by reducing agents such as glutathione in the cytosol of cells. Both of these platforms were studied in vitro to deliver antibiotics to infected macrophages and in vivo to cure and kill the intracellular bacteria M. tuberculosis and F. tularensis. The latter is a tier 1 select agent of bioterrorism. Finally, we describe nanomachines for drug delivery that are controlled by externally administered light and magnetic fields. A futuristic dream for nanotherapy is the ability to control a nano-object everywhere in the body. Magnetic fields penetrate completely and have spatial selectivity governed by the size of the field-producing coil. We describe how to control nanovalves with alternating magnetic fields (AMFs) and superparamagnetic cores inside the MSNs. The AMF heats the cores, and temperature-sensitive caps release the cargo. In vitro studies demonstrate dose control of the therapeutic to cause apoptosis without overheating the cells. Nanocarriers have great promise for therapeutic applications, and MSNs that can carry drugs to the site of a disease to produce a high local concentration without premature release and off-target damage may have the capability of realizing this goal.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Nanotecnología/métodos , Dióxido de Silicio/química , Animales , Antineoplásicos/farmacología , Antituberculosos/farmacología , Liberación de Fármacos , Calefacción , Humanos , Fenómenos Magnéticos , Ratones , ARN Interferente Pequeño/farmacología
20.
ACS Nano ; 13(2): 1292-1308, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30633500

RESUMEN

Noninvasive stimuli-responsive drug delivery using magnetic fields in conjunction with superparamagnetic nanoparticles offers the potential for the spatial and temporal control of drug release. When hyperthermia is not desired and control of the dosage is required, it is necessary to design a platform in which local heating on the nanoscale releases the therapeutic cargo without the bulk heating of the surrounding medium. In this paper, we report a design using a stimuli-responsive nanoparticle platform to control the dosage of the cargo released by an alternating magnetic field (AMF) actuation. A core@shell structure with a superparamagnetic doped iron oxide (MnFe2O4@CoFe2O4) nanoparticle core in a mesoporous silica shell was synthesized. The core used here has a high saturation magnetization value and a high specific loss power for heat generation under an AMF. The mesoporous shell has a high cargo-carrying capacity. A thermoresponsive molecular-based gatekeeper containing an aliphatic azo group was modified on the core@shell nanoparticles to regulate the cargo release. The mesoporous structure of the silica shell remained intact after exposure to an AMF, showing that the release of cargo is due to the removal of the gatekeepers instead of the destruction of the structure. Most importantly, we demonstrated that the amount of cargo released could be adjusted by the AMF exposure time. By applying multiple sequential exposures of AMF, we were able to release the cargo step-wise and increase the total amount of released cargo. In vitro studies showed that the death of pancreatic cancer cells treated by drug-loaded nanoparticles was controlled by different lengths of AMF exposure time due to different amount of drugs released from the carriers. The strategy developed here holds great promise for achieving the dosage, temporal, and spatial control of therapeutics delivery without the risk of overheating the particles' surroundings.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Cobalto/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Compuestos Férricos/farmacología , Nanopartículas de Magnetita/química , Manganeso/farmacología , Antibióticos Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobalto/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Férricos/química , Humanos , Manganeso/química , Conformación Molecular , Imagen Óptica , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...